平成27年度(前期・後期)外来研究員実施報告書

東京大学物性研究所長 殿

所属・職名 横浜国立大学・准教授

氏 名 中津川 博

研究題目	Pr _{1-x} Sr _x (Mn _{1-y} Fe _y)O ₃ の反強磁性と熱電特性に関する研究		
利用期間	平成 27 年 4 月 1 日~ 平成 27 年 9 月 30 日	利用研究室 ・実験室名	東京大学物性研究所 徳永研究室 · 国際超強磁場科学研究施設
共同研究者			
氏名・職名・所属			
① 磁気特性測定システム(MPMS 日本カンタムデザイン)			
② 一般的な固相反応法を用いて作製した $Pr_{1-x}Sr_x(Mn_{1-y}Fe_y)O_3$ (x=0.1, 0 \leq y \leq 0.9)、及び、			
Pr _{1-x} Sr _x (Mn _{1-y} Fe _y)O ₃ (0.1≦x≦0.3, y=1)の熱電特性と磁性を測定した。電気伝導率ρとゼーベック係数			
S は、四端子法と定常法を用いてそれぞれ測定し、出力因子 S^2/ ho を評価した。 <u>今回、5~350K での</u>			
磁化率測定を、本申請の支援の下、磁場 H=1T 一定の条件下で MT 測定を行った。			
③ 電子 dope された CaMnO ₃ は高い n 型の性能を示す酸化物熱電変換材料として知られており、酸化物			
熱電変換モジュール作製の為、同程度の p 型の性能を示す酸化物熱電変換材料が求められている。			
Ca ₃ Co ₄ O ₉ などの層状 Co 酸化物では高い p 型の性能を示す材料が知られているが、熱膨張率の違い			
が無視できる pn 素子は酸化物熱電変換材料では実現されていない。 <u>本研究の目的は、ペロフスカイ</u>			
<u>ト酸化物のp型熱電性能に着目し、p型素子としての可能性を調査することにある。Fig.1に示すよ</u>			
うに、Pr _{0.9} Sr ₀ MnO ₃ (y=0)は室温付近まで強磁性的な磁性秩序が維持されている為、Fig.2 に示すよう			
に 500K で ZT=0.0035 の p 型熱電性能を示すが、 $Pr_{0.9}Sr_{0.1}(Mn_{1-y}Fe_y)O_3(0.1 \le y \le 0.9)$ は y の増加と共に			
しいる(Fig.2)。Fig.3 に示すように、磁化率の逆級からスピン軍士級を見損もると、Yの増加と共に 減小していてこれが理解できた。これは、活動された F- が低力ピン世能でも h - フールミレベル仕			
減少してい	ることか埋解でさる。これは、添加 たたいまだまた。ていたいこしまご	された Fe か低	スピン状態であり、ノエルミレベル付 + P: くにごすときに P & P 0
近り电于悟垣には直接前子していないことを小唆している。一万、 Fig.o に小りよりに、 $Pf_{0.9}Sf_{0.1}FeO_3$ $(-1)(+ 2 e^{-1}) + 2 = 7 * s_{-1} 44 * s_{-1} + 1 = 1 = 1 = 2 * 2 \cdot c_{-1}^{3+}(00) + (-1)(+ 2 e^{-1}) + (-1)(+$			
(y=1)は人てノ重ナ级 S=1.44 を小し、中间人てノ Fe 90%と低人てノ Fe 10%の人てノ 扒態を取り、 Ease 動送の工工が教索理角に実ちナスことが期待されて、宇際 Ease にテナトるに 400K ビートで言			
ΓC_g 軌道の正化が恐電況家に計学りることが朔付される。美际 Fig.5 にかりように、400K 以上で同 い n 刑執雪焼栱 を云し Dr. Sr. FaO. でけ 800K で 0.1 mW/mV ² を招うる出力田子を云している Fig.4			
$v \cdot p$ 至然电行任を示し、 $\Gamma_{0.7510.3}$ CG 300K C 0.1 m W/mK を超える山力凶」を示している。 $\Gamma_{0.7510.4}$ に云オトらに 命磁性的な磁性独良の消生に上り磁化率の絶対値は小さい 合後け 更に真い。刑			
した、 ない 、 強協に がなる に ない に ない に ない に ない に ない に ない に ない に ない に ない で い 。 <u> う</u> な な、 文 に 同 い り 主 執 こ か こ の た の に し い り 主 か こ の に の い り 主 、 の に の い り 主 、 の に の い り 主 、 の に の い り 主 、 の に の い り 主 、 の に の い り 主 、 の に の い り 主 の に の い の に の い り 主 の に の い の に の い り 主 の に の い り 上 の に の い り 一 の に の い り 一 の に の い り 一 の に の い の い の に し の い の の い の つ て の に し い り つ て の に 、 の い の の の い の の の に の の の の の い の の の の の の の の の の の の の			
<u> </u>			
石内には、 日本には、			
一			
平成 27 年 9 月 13 日、応用物理学会秋季学術講演会 9.4 熱電材料セッションで"ペロフスカイト酸化物			
Pr _{1-x} Sr _x (Mn _{1-y} Fe _y)O ₃ のp型熱電特性"という題目で口頭発表を行った。			
知的財産権の取得状況又は取得予定 ※「発明等の名称」「発明者等」「出願人等」をお書きください			
要望・感想 ※共同利用を行う上での問題点、所への要望・感想等をお書きください。			
4泊5日のマシンタイムをまた頂けると幸いです。			

※)1期(半年又は1年)毎に、提出してください

